Arbeitspapier

Consumption-Portfolio Choice with Preferences for Cash

This paper studies a consumption-portfolio problem where money enters the agent's utility function. We solve the corresponding Hamilton-Jacobi-Bellman equation and provide closed-form solutions for the optimal consumption and portfolio strategy both in an infinite- and finite-horizon setting. For the infinite-horizon problem, the optimal stock demand is one particular root of a polynomial. In the finite-horizon case, the optimal stock demand is given by the inverse of the solution to an ordinary differential equation that can be solved explicitly. We also prove verification results showing that the solution to the Bellman equation is indeed the value function of the problem. From an economic point of view, we find that in the finite-horizon case the optimal stock demand is typically decreasing in age, which is in line with rules of thumb given by financial advisers and also with recent empirical evidence.

Sprache
Englisch

Erschienen in
Series: SAFE Working Paper ; No. 181

Klassifikation
Wirtschaft
Portfolio Choice; Investment Decisions
Optimization Techniques; Programming Models; Dynamic Analysis
Thema
consumption-portfolio choice
money in the utility function
stock demand
stochastic control

Ereignis
Geistige Schöpfung
(wer)
Kraft, Holger
Weiss, Farina
Ereignis
Veröffentlichung
(wer)
Goethe University Frankfurt, SAFE - Sustainable Architecture for Finance in Europe
(wo)
Frankfurt a. M.
(wann)
2017

DOI
doi:10.2139/ssrn.3034165
Handle
URN
urn:nbn:de:hebis:30:3-438732
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kraft, Holger
  • Weiss, Farina
  • Goethe University Frankfurt, SAFE - Sustainable Architecture for Finance in Europe

Entstanden

  • 2017

Ähnliche Objekte (12)