Calabi flow on toric varieties with bounded Sobolev constant, I

Abstract: Let (X, P) be a toric variety. In this note, we show that the C0-norm of the Calabi flow φ(t) on X is uniformly bounded in [0, T) if the Sobolev constant of φ(t) is uniformly bounded in [0, T). We also show that if (X, P) is uniform K-stable, then the modified Calabi flow converges exponentially fast to an extremal Kähler metric if the Ricci curvature and the Sobolev constant are uniformly bounded. At last, we discuss an extension of our results to a quasi-proper Kähler manifold.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Calabi flow on toric varieties with bounded Sobolev constant, I ; volume:3 ; number:1 ; year:2016 ; extent:11
Complex manifolds ; 3, Heft 1 (2016) (gesamt 11)

Creator
Huang, Hongnian

DOI
10.1515/coma-2016-0009
URN
urn:nbn:de:101:1-2410281501309.708984216334
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:29 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Huang, Hongnian

Other Objects (12)