Konferenzbeitrag

Hard constraints for grammatical function labelling

For languages with (semi-) free word order (such as German), labelling grammatical functions on top of phrase-structural constituent analyses is crucial for making them interpretable. Unfortunately, most statistical classifiers consider only local information for function labelling and fail to capture important restrictions on the distribution of core argument functions such as subject, object etc., namely that there is at most one subject (etc.) per clause. We augment a statistical classifier with an integer linear program imposing hard linguistic constraints on the solution space output by the classifier, capturing global distributional restrictions. We show that this improves labelling quality, in particular for argument grammatical functions, in an intrinsic evaluation, and, importantly, grammar coverage for treebankbased (Lexical-Functional) grammar acquisition and parsing, in an extrinsic evaluation.

Hard constraints for grammatical function labelling

Urheber*in: Seeker, Wolfgang; Rehbein, Ines; Kuhn, Joans; van Genabith, Josef

In copyright

0
/
0

Language
Englisch

Subject
Phrasenstruktur
Automatische Sprachanalyse
Sprache

Event
Geistige Schöpfung
(who)
Seeker, Wolfgang
Rehbein, Ines
Kuhn, Joans
van Genabith, Josef
Event
Veröffentlichung
(who)
Stroudsburg, PA : Association for Computational Linguistics
(when)
2016-11-21

URN
urn:nbn:de:bsz:mh39-56059
Last update
06.03.2025, 9:00 AM CET

Data provider

This object is provided by:
Leibniz-Institut für Deutsche Sprache - Bibliothek. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Seeker, Wolfgang
  • Rehbein, Ines
  • Kuhn, Joans
  • van Genabith, Josef
  • Stroudsburg, PA : Association for Computational Linguistics

Time of origin

  • 2016-11-21

Other Objects (12)