M‐quantile regression shrinkage and selection via the Lasso and Elastic Net to assess the effect of meteorology and traffic on air quality

Abstract: In this work, we intersect data on size‐selected particulate matter (PM) with vehicular traffic counts and a comprehensive set of meteorological covariates to study the effect of traffic on air quality. To this end, we develop an M‐quantile regression model with Lasso and Elastic Net penalizations. This allows (i) to identify the best proxy for vehicular traffic via model selection, (ii) to investigate the relationship between fine PM concentration and the covariates at different M‐quantiles of the conditional response distribution, and (iii) to be robust to the presence of outliers. Heterogeneity in the data is accounted by fitting a B‐spline on the effect of the day of the year. Analytic and bootstrap‐based variance estimates of the regression coefficients are provided, together with a numerical evaluation of the proposed estimation procedure. Empirical results show that atmospheric stability is responsible for the most significant effect on fine PM concentration: this effect changes at different levels of the conditional response distribution and is relatively weaker on the tails. On the other hand, model selection allows to identify the best proxy for vehicular traffic whose effect remains essentially the same at different levels of the conditional response distribution.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
M‐quantile regression shrinkage and selection via the Lasso and Elastic Net to assess the effect of meteorology and traffic on air quality ; day:24 ; month:09 ; year:2023 ; extent:16
Biometrical journal ; (24.09.2023) (gesamt 16)

Urheber
Ranalli, M. Giovanna
Salvati, Nicola
Petrella, Lea
Pantalone, Francesco

DOI
10.1002/bimj.202100355
URN
urn:nbn:de:101:1-2023092515045427698499
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:44 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Ranalli, M. Giovanna
  • Salvati, Nicola
  • Petrella, Lea
  • Pantalone, Francesco

Ähnliche Objekte (12)