Analysing attention convolutional neural network for surgical tool localisation: a feasibility study

Abstract: Image-based surgical tool localisation and detection play an important role in developing intelligent systems for operating theatres of the future. In literature, proposed approaches require large amounts of data that are fully annotated with tool positions in the image. In this paper, a deep learning framework, trained on binary tool presence, was evaluated for surgical tool localisation in laparoscopic images. Gradient class activation maps (Grad-CAMs) were extracted from an attention-CNN model. The Grad-CAMs were then processed to generate bounding boxes over the surgical tools. Experimental results showed better performance of the attention-CNN compared to the base CNN model with mean tool localisation precision of 72.4% and 28.3%, respectively. These results show the potential of using attention modules to improve tool localisation in laparoscopic images.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Analysing attention convolutional neural network for surgical tool localisation: a feasibility study ; volume:8 ; number:2 ; year:2022 ; pages:548-551 ; extent:4
Current directions in biomedical engineering ; 8, Heft 2 (2022), 548-551 (gesamt 4)

DOI
10.1515/cdbme-2022-1140
URN
urn:nbn:de:101:1-2022090315242033283407
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:28 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)