Bio‐Orthogonal Bacterial Reactor for Remission of Heavy Metal Poisoning and ROS Elimination
Abstract: Multitudinous industrial products in daily life put human health at risk of heavy metal exposure, and natural bacteria have displayed superior performance in bioadsorption and biodegradation of heavy metal. In this study, a bacteria‐based bioreactor is developed to precisely bioadsorb lead (Pb) ions, eliminate concomitant reactive oxygen species (ROS), and remit the injury of acute/chronic Pb poisoning. A nonpathogenic bacteria Escherichia coli MG1655 (Bac) is decorated with antioxidative cerium oxide nanoparticles (Ceria) on the surface through a bio‐orthogonal reaction, and the complex bioreactor could spontaneously aggregate in organs with high concentration of Pb. Furthermore, the excess Pb is bioadsorbed by bacteria and the concomitant ROS is eliminated by Ceria nanoparticles. In vitro and in vivo studies demonstrate that this integral biotic/abiotic hybrid bioreactor successfully realizes detoxication of Pb and reparation of injury, also accompanied with inappreciable side effects.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Bio‐Orthogonal Bacterial Reactor for Remission of Heavy Metal Poisoning and ROS Elimination ; volume:6 ; number:24 ; year:2019 ; extent:9
Advanced science ; 6, Heft 24 (2019) (gesamt 9)
- Creator
-
Pan, Pei
Fan, Jin‐Xuan
Wang, Xia‐Nan
Wang, Jia‐Wei
Zheng, Di‐Wei
Cheng, Han
Zhang, Xian‐Zheng
- DOI
-
10.1002/advs.201902500
- URN
-
urn:nbn:de:101:1-2022071807564068823845
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:34 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Pan, Pei
- Fan, Jin‐Xuan
- Wang, Xia‐Nan
- Wang, Jia‐Wei
- Zheng, Di‐Wei
- Cheng, Han
- Zhang, Xian‐Zheng