Three‐dimensional radial echo‐planar spectroscopic imaging for hyperpolarized 13C MRSI in vivo

Abstract: Purpose
To demonstrate the feasibility of 3D echo-planar spectroscopic imaging (EPSI) technique with rapid volumetric radial k-space sampling for hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) in vivo.

Methods
A radial EPSI (rEPSI) was implemented on a 3 T clinical PET/MR system. To enable volumetric coverage, the sinusoidal shaped readout gradients per k-t-spoke were rotated along the three spatial dimensions in a golden-angle like manner. A distance-weighted, density-compensated gridding reconstruction was used, also in cases with undersampling of spokes in k-space. Measurements without and with HP 13C-labeled substances were performed in phantoms and rats using a double-resonant 13C/1H volume resonator with 72 mm inner diameter.

Results
Phantom measurements demonstrated the feasibility of the implemented rEPSI sequence, as well as the robustness to undersampling in k-space up to a factor of 5 without advanced reconstruction techniques. Applied to measurements with HP [1-13C]pyruvate in a tumor-bearing rat, we obtained well-resolved MRSI datasets with a large matrix size of 123 voxels covering the whole imaging FOV of (180 mm)3 within 6.3 s, enabling to observe metabolism in dynamic acquisitions.

Conclusion
After further optimization, the proposed rEPSI method may be useful in applications of HP 13C-tracers where unknown or varying metabolite resonances are expected, and the acquisition of dynamic, volumetric MRSI datasets with an adequate temporal resolution is a challenge

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Magnetic resonance in medicine. - 93, 1 (2025) , 31-41, ISSN: 1522-2594

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator

DOI
10.1002/mrm.30258
URN
urn:nbn:de:bsz:25-freidok-2564755
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)