Arbeitspapier

Bayes Estimators of the Cointegration Space

A neglected aspect of the otherwise fairly well developed Bayesian analysis of cointegration is the point estimation of the cointegration space. It is pointed out here that, due to the well known non-identification of the cointegration vectors, the parameter space is not an inner product space and conventional Bayes estimators therefore stand without their usual decision theoretic foundation. We present a Bayes estimator of the cointegration space which takes the curved geometry of the parameter space into account. Contrary to many of the Bayes estimators used in the literature, this estimator is invariant to the ordering of the time series. A dimension invariant overall measure of cointegration space uncertainty is also proposed. A small simulation study shows that the Bayes estimator compares favorably to the maximum likelihood estimator.

Sprache
Englisch

Erschienen in
Series: Sveriges Riksbank Working Paper Series ; No. 150

Klassifikation
Wirtschaft
Bayesian Analysis: General
Estimation: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
Bayesian inference
Cointegration analysis
Estimation
Grassman manifold
Subspaces.

Ereignis
Geistige Schöpfung
(wer)
Villani, Mattias
Ereignis
Veröffentlichung
(wer)
Sveriges Riksbank
(wo)
Stockholm
(wann)
2003

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Villani, Mattias
  • Sveriges Riksbank

Entstanden

  • 2003

Ähnliche Objekte (12)