High‐Temperature Degradation Mechanism of Interfacial Thermal Resistance Based on Submicron Silver Adhesion

Abstract: Thermal interface materials (TIM) represented by submicron silver adhesive provide a promising solution for ultra‐high heat dissipation in chip integration. However, it is difficult to accurately characterize the thermal performance of submicron silver adhesive interfaces, and their high‐temperature degradation mechanism still remains unclear. Herein, the accelerated high‐temperature aging experiments of submicron silver adhesion interfaces are performed, and a non‐destructive testing method is provided to measure the degeneration of interfacial thermal resistance (ITR). After performing the two‐sided test, ITR can be extracted with an error of less than 4.6%. Based on scanning electron microscopy and X‐ray microstructural analysis, the microstructural evolution of silver adhesive interfaces is presented and its high‐temperature degradation mechanism is determined. It is observed for the first time that ITR would change with the aging time following a bathtub curve. Such a degenerative process can be evidently divided into three stages including secondary solidification, fluctuation, and failure. In addition, a physical model is developed to interpret the degradation mechanism of ITR at high temperatures. The change in the trend of submicron silver body and TIM–solid contact thermal resistance at different stages is presented. This work helps promote submicron silver's application as high‐performance TIM.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
High‐Temperature Degradation Mechanism of Interfacial Thermal Resistance Based on Submicron Silver Adhesion ; day:04 ; month:12 ; year:2022 ; extent:9
Advanced materials interfaces ; (04.12.2022) (gesamt 9)

Creator
Wang, Jian
Fu, Zhiwei
Zhao, Huanhuan
Li, Zhiqiang
Ma, Dezhi
Yang, Chao
He, Zhiyuan
Guo, Xiaotong
Yang, Xiaofeng
Chen, Si
Liu, Linhua
Yang, Jia‐Yue

DOI
10.1002/admi.202202017
URN
urn:nbn:de:101:1-2022120514114897717662
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Wang, Jian
  • Fu, Zhiwei
  • Zhao, Huanhuan
  • Li, Zhiqiang
  • Ma, Dezhi
  • Yang, Chao
  • He, Zhiyuan
  • Guo, Xiaotong
  • Yang, Xiaofeng
  • Chen, Si
  • Liu, Linhua
  • Yang, Jia‐Yue

Other Objects (12)