Short communication: Part contour error prediction based on LSTM neural network

Abstract Machine tools are subject to multiple sources of error during machining, resulting in deviations in the dimensions of the part and a reduction in contour accuracy. This paper proposes a contour error prediction model based on a long short-term memory (LSTM) neural network, taking hexagonal recess machining as an example and considering the power, vibration, and temperature signals that affect the contour error. The experimental data show that the model can accurately predict the contour error of the machined part. A more accurate and robust contour error prediction model can provide data support for online compensation of contour errors.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Short communication: Part contour error prediction based on LSTM neural network ; volume:14 ; number:1 ; year:2023 ; pages:15-18 ; extent:4
Mechanical sciences ; 14, Heft 1 (2023), 15-18 (gesamt 4)

Urheber
Zhang, Yun
Liang, Guangshun
Cao, Cong
Li, Yan

DOI
10.5194/ms-14-15-2023
URN
urn:nbn:de:101:1-2023011904291876061466
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Zhang, Yun
  • Liang, Guangshun
  • Cao, Cong
  • Li, Yan

Ähnliche Objekte (12)