Deep Learning-Based Psoriasis Assessment: Harnessing Clinical Trial Imaging for Accurate Psoriasis Area Severity Index Prediction

Abstract: Introduction: Image-based machine learning holds great promise for facilitating clinical care; however, the datasets often used for model training differ from the interventional clinical trial-based findings frequently used to inform treatment guidelines. Here, we draw on longitudinal imaging of psoriasis patients undergoing treatment in the Ultima 2 clinical trial (NCT02684357), including 2,700 body images with psoriasis area severity index (PASI) annotations by uniformly trained dermatologists. Methods: An image-processing workflow integrating clinical photos of multiple body regions into one model pipeline was developed, which we refer to as the “One-Step PASI” framework due to its simultaneous body detection, lesion detection, and lesion severity classification. Group-stratified cross-validation was performed with 145 deep convolutional neural network models combined in an ensemble learning architecture. Results: The highest-performing model demonstrated a mean absolute error of 3.3, Lin’s concordance correlation coefficient of 0.86, and Pearson correlation coefficient of 0.90 across a wide range of PASI scores comprising disease classifications of clear skin, mild, and moderate-to-severe disease. Within-person, time-series analysis of model performance demonstrated that PASI predictions closely tracked the trajectory of physician scores from severe to clear skin without systematically over- or underestimating PASI scores or percent changes from baseline. Conclusion: This study demonstrates the potential of image processing and deep learning to translate otherwise inaccessible clinical trial data into accurate, extensible machine learning models to assess therapeutic efficacy.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Deep Learning-Based Psoriasis Assessment: Harnessing Clinical Trial Imaging for Accurate Psoriasis Area Severity Index Prediction ; volume:8 ; number:1 ; year:2024 ; pages:13-21 ; extent:9
Digital biomarkers ; 8, Heft 1 (2024), 13-21 (gesamt 9)

Urheber
Xing, Yunzhao
Zhong, Sheng
Aronson, Samuel L.
Rausa, Francisco M.
Webster, Dan E.
Crouthamel, Michelle H.
Wang, Li

DOI
10.1159/000536499
URN
urn:nbn:de:101:1-2406270112551.253178796179
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Xing, Yunzhao
  • Zhong, Sheng
  • Aronson, Samuel L.
  • Rausa, Francisco M.
  • Webster, Dan E.
  • Crouthamel, Michelle H.
  • Wang, Li

Ähnliche Objekte (12)