Artikel

Forecasting Spanish unemployment with Google Trends and dimension reduction techniques

This paper presents a method to improve the one-step-ahead forecasts of the Spanish unemployment monthly series. To do so, we use numerous potential explanatory variables extracted from searches in Google (GoogleTrends tool).Two different dimension reduction techniques are implemented (PCA and Forward Stepwise Selection) to decide how to combine the explanatory variables or which ones to use. The results of a recursive forecasting exercise reveal a statistically significant increase in predictive accuracy of 10-25%, depending on the dimension reduction method employed. A deep robustness analysis confirms these findings, as well as the relevance of using a large amount of Google queries together with a dimension reduction technique, when no prior information on which are the most informative queries is available.

Sprache
Englisch

Erschienen in
Journal: SERIEs - Journal of the Spanish Economic Association ; ISSN: 1869-4195 ; Volume: 12 ; Year: 2021 ; Issue: 3 ; Pages: 329-349

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Thema
Unemployment
Forecasting
Dimensionalityreduction
RMSE

Ereignis
Geistige Schöpfung
(wer)
Mulero, Rodrigo
Garcia-Hiernaux, Alfredo
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2021

DOI
doi:10.1007/s13209-021-00231-x
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Mulero, Rodrigo
  • Garcia-Hiernaux, Alfredo
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)