Artikel

Forecasting Spanish unemployment with Google Trends and dimension reduction techniques

This paper presents a method to improve the one-step-ahead forecasts of the Spanish unemployment monthly series. To do so, we use numerous potential explanatory variables extracted from searches in Google (GoogleTrends tool).Two different dimension reduction techniques are implemented (PCA and Forward Stepwise Selection) to decide how to combine the explanatory variables or which ones to use. The results of a recursive forecasting exercise reveal a statistically significant increase in predictive accuracy of 10-25%, depending on the dimension reduction method employed. A deep robustness analysis confirms these findings, as well as the relevance of using a large amount of Google queries together with a dimension reduction technique, when no prior information on which are the most informative queries is available.

Language
Englisch

Bibliographic citation
Journal: SERIEs - Journal of the Spanish Economic Association ; ISSN: 1869-4195 ; Volume: 12 ; Year: 2021 ; Issue: 3 ; Pages: 329-349

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Subject
Unemployment
Forecasting
Dimensionalityreduction
RMSE

Event
Geistige Schöpfung
(who)
Mulero, Rodrigo
Garcia-Hiernaux, Alfredo
Event
Veröffentlichung
(who)
Springer
(where)
Heidelberg
(when)
2021

DOI
doi:10.1007/s13209-021-00231-x
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Mulero, Rodrigo
  • Garcia-Hiernaux, Alfredo
  • Springer

Time of origin

  • 2021

Other Objects (12)