Artikel

Modeling county-level spatio-temporal mortality rates using dynamic linear models

The lifestyles and backgrounds of individuals across the United States differ widely. Some of these differences are easily measurable (ethnicity, age, income, etc.) while others are not (stress levels, empathy, diet, exercise, etc.). Though every person is unique, individuals living closer together likely have more similar lifestyles than individuals living hundreds of miles apart. Because lifestyle and environmental factors contribute to mortality, spatial correlation may be an important feature in mortality modeling. However, many of the current mortality models fail to account for spatial relationships. This paper introduces spatio-temporal trends into traditional mortality modeling using Bayesian hierarchical models with conditional auto-regressive (CAR) priors. We show that these priors, commonly used for areal data, are appropriate for modeling county-level spatial trends in mortality data covering the contiguous United States. We find that mortality rates of neighboring counties are highly correlated. Additionally, we find that mortality improvement or deterioration trends between neighboring counties are also highly correlated.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 4 ; Pages: 1-15 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
mortality improvement
Bayesian modeling
spatial generalized linear model
conditional auto-regressive priors

Ereignis
Geistige Schöpfung
(wer)
Gibbs, Zoe
Groendyke, Chris
Hartman, Brian
Richardson, Robert
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8040117
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Gibbs, Zoe
  • Groendyke, Chris
  • Hartman, Brian
  • Richardson, Robert
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)