A mortality prediction score for patients with veno-venous extracorporeal membrane oxygenation (VV-ECMO): the PREDICT VV-ECMO score

Abstract: Mortality prediction for patients with the severe acute respiratory distress syndrome (ARDS) supported with veno-venous extracorporeal membrane oxygenation (VV-ECMO) is challenging. Clinical variables at baseline and on day 3 after initiation of ECMO support of all patients treated from October 2010 through April 2020 were analyzed. Multivariate logistic regression analysis was used to identify score variables. Internal and external (Monza, Italy) validation was used to evaluate the predictive value of the model. Overall, 272 patients could be included for data analysis and creation of the PREDICT VV-ECMO score. The score comprises five parameters (age, lung fibrosis, immunosuppression, cumulative fluid balance, and ECMO sweep gas flow on day 3). Higher score values are associated with a higher probability of hospital death. The score showed favorable results in derivation and external validation cohorts (area under the receiver operating curve, AUC derivation cohort 0.76 [95% confidence interval, CI, 0.71–0.82] and AUC validation cohort 0.74 [95% CI, 0.67–0.82]). Four risk classes were defined: I ≤ 30, II 31–60, III 61–90, and IV ≥ 91 with a predicted mortality of 28.2%, 56.2%, 84.8%, and 96.1%, respectively. The PREDICT VV-ECMO score suggests favorable performance in predicting hospital mortality under ongoing ECMO support providing a sound basis for further evaluation in larger cohorts

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
ASAIO journal. - 70, 4 (2024) , 293-298, ISSN: 1058-2916

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023

DOI
10.1097/mat.0000000000002088
URN
urn:nbn:de:bsz:25-freidok-2412025
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)