Derangement model of ligand-receptor binding

Abstract: We introduce a derangement model of ligand-receptor binding that allows us to quantitatively frame the question “How can ligands seek out and bind to their optimal receptor sites in a sea of other competing ligands and suboptimal receptor sites?” To answer the question, we first derive a formula to count the number of partial generalized derangements in a list, thus extending the derangement result of Gillis and Even. We then compute the general partition function for the ligand-receptor system and derive the equilibrium expressions for the average number of bound ligands and the average number of optimally bound ligands. A visual model of squares assembling onto a grid allows us to easily identify fully optimal bound states. Equilibrium simulations of the system reveal its extremes to be one of two types, qualitatively distinguished by whether optimal ligand-receptor binding is the dominant form of binding at all temperatures and quantitatively distinguished by the relative values of two critical temperatures. One of those system types (termed “search-limited,” as it was in previous work) does not exhibit kinetic traps and we thus infer that biomolecular systems where optimal ligand-receptor binding is functionally important are likely to be search-limited.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Derangement model of ligand-receptor binding ; volume:10 ; number:1 ; year:2022 ; pages:123-166 ; extent:44
Computational and mathematical biophysics ; 10, Heft 1 (2022), 123-166 (gesamt 44)

Urheber
Williams, Mobolaji

DOI
10.1515/cmb-2022-0137
URN
urn:nbn:de:101:1-2022081811371858526954
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:35 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Williams, Mobolaji

Ähnliche Objekte (12)