Arbeitspapier

Principal component analysis in an asymmetric norm

Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of high-dimensional data. However, in many applications such as risk quantification in finance or climatology, one is interested in capturing the tail variations rather than variation around the mean. In this paper, we develop Principal Expectile Analysis (PEC), which generalizes PCA for expectiles. It can be seen as a dimension reduction tool for extreme value theory, where one approximates uctuations in the expectile level of the data by a low dimensional subspace. We provide algorithms based on iterative least squares, prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset and fMRI data from an investment decision study.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2016-040

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Large Data Sets: Modeling and Analysis
Optimization Techniques; Programming Models; Dynamic Analysis
Computational Techniques; Simulation Modeling
Criteria for Decision-Making under Risk and Uncertainty
Thema
principal components
asymmetric norm
dimension reduction
quantile
expectile
fMRI
risk attitude
brain imaging
temperature
functional data

Ereignis
Geistige Schöpfung
(wer)
Tran, Ngoc Mai
Burdejová, Petra
Osipenko, Maria
Härdle, Wolfgang Karl
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Tran, Ngoc Mai
  • Burdejová, Petra
  • Osipenko, Maria
  • Härdle, Wolfgang Karl
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2016

Ähnliche Objekte (12)