Arbeitspapier
Principal component analysis in an asymmetric norm
Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of high-dimensional data. However, in many applications such as risk quantification in finance or climatology, one is interested in capturing the tail variations rather than variation around the mean. In this paper, we develop Principal Expectile Analysis (PEC), which generalizes PCA for expectiles. It can be seen as a dimension reduction tool for extreme value theory, where one approximates uctuations in the expectile level of the data by a low dimensional subspace. We provide algorithms based on iterative least squares, prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset and fMRI data from an investment decision study.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2016-040
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Large Data Sets: Modeling and Analysis
Optimization Techniques; Programming Models; Dynamic Analysis
Computational Techniques; Simulation Modeling
Criteria for Decision-Making under Risk and Uncertainty
- Thema
-
principal components
asymmetric norm
dimension reduction
quantile
expectile
fMRI
risk attitude
brain imaging
temperature
functional data
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Tran, Ngoc Mai
Burdejová, Petra
Osipenko, Maria
Härdle, Wolfgang Karl
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2016
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Tran, Ngoc Mai
- Burdejová, Petra
- Osipenko, Maria
- Härdle, Wolfgang Karl
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2016