Konferenzbeitrag
Removing spam from web corpora through supervised learning using FastText
Unlike traditional text corpora collected from trustworthy sources, the content of web based corpora has to be filtered. This study briefly discusses the impact of web spam on corpus usability and emphasizes the importance of removing computer generated text from web corpora. The paper also presents a keyword comparison of an unfiltered corpus with the same collection of texts cleaned by a supervised classifier trained using FastText. The classifier was able to recognize 71% of web spam documents similar to the training set but lacked both precision and recall when applied to short texts from another data set.
- Language
-
Englisch
- Subject
-
Korpus <Linguistik>
Internet
Texttechnologie
Datenmanagement
Sprache
- Event
-
Geistige Schöpfung
- (who)
-
Suchomel, Vít
- Event
-
Veröffentlichung
- (who)
-
Mannheim : Institut für Deutsche Sprache
- (when)
-
2017-07-06
- URN
-
urn:nbn:de:bsz:mh39-62674
- Last update
-
06.03.2025, 9:00 AM CET
Data provider
Leibniz-Institut für Deutsche Sprache - Bibliothek. If you have any questions about the object, please contact the data provider.
Object type
- Konferenzbeitrag
Associated
- Suchomel, Vít
- Mannheim : Institut für Deutsche Sprache
Time of origin
- 2017-07-06