Long‐Range Chirality Recognition of a Polar Molecule on Au (111)

Abstract: Chiral molecular self‐assemblies were usually achieved using short‐range intermolecular interactions, such as hydrogen‐, metal–organic, and covalent bonding. However, unavoidable surface defects, such as step edges, surface reconstructions, or site dislocations may limit the applicability of short‐range chirality recognition. Long‐range chirality recognition on surfaces would be an appealing but challenging strategy for chiral reservation across surface defects at long distances. Now, long‐range chirality recognition is presented between neighboring 3‐bromo‐naphthalen‐2‐ol (BNOL) stripes on an inert Au (111) surface across the herringbone reconstruction as investigated by STM and DFT calculations. The key to achieving such recognition is the herringbone reconstruction‐induced local dipole accumulation at the edges of the BNOL stripes. The neighboring stripes are then forced to adopt the same chirality to create the opposite edged dipoles and neutralize the neighbored dipole moments.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Long‐Range Chirality Recognition of a Polar Molecule on Au (111) ; volume:132 ; number:1 ; year:2020 ; pages:188-192 ; extent:5
Angewandte Chemie ; 132, Heft 1 (2020), 188-192 (gesamt 5)

Creator
Kong, Huihui
Qian, Yinyue
Liu, Xinbang
Wan, Xinling
Amirjalayer, Saeed
Fuchs, Harald

DOI
10.1002/ange.201909593
URN
urn:nbn:de:101:1-2022052510591052711111
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:38 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kong, Huihui
  • Qian, Yinyue
  • Liu, Xinbang
  • Wan, Xinling
  • Amirjalayer, Saeed
  • Fuchs, Harald

Other Objects (12)