Concept Embedding for Information Retrieval
Abstract: Concepts are used to solve the term-mismatch problem. However, we need an effective similarity measure between concepts. Word embedding presents a promising solution. We present in this study three approaches to build concepts vectors based on words vectors. We use a vector-based measure to estimate inter-concepts similarity. Our experiments show promising results. Furthermore, words and concepts become comparable. This could be used to improve conceptual indexing process
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource, 563-569 S.
- Language
-
Englisch
- Notes
-
Postprint
begutachtet (peer reviewed)
In: Pasi, Gabriella (Hg.), Piwowarski, Benjamin (Hg.), Azzopardi, Leif (Hg.), Hanbury, Allan (Hg.): Advances in Information Retrieval: 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018 ; Proceedings. 2018. S. 563-569. ISBN 978-3-319-76941-7
- Bibliographic citation
-
Advances in Information Retrieval: 40th European Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018 ; Proceedings ; Bd. 10772
Lecture Notes in Computer Science (LNCS) ; Bd. 10772
- Classification
-
Bibliotheks- und Informationswissenschaft
- Event
-
Veröffentlichung
- (where)
-
Mannheim
- (who)
-
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
- (when)
-
2018
- Event
-
Veröffentlichung
- (where)
-
Cham
- (who)
-
Springer International Publishing
- (when)
-
2018
- Creator
-
Abdulahhad, Karam
- Contributor
-
Pasi, Gabriella
Piwowarski, Benjamin
Azzopardi, Leif
Hanbury, Allan
- DOI
-
10.1007/978-3-319-76941-7_45
- URN
-
urn:nbn:de:0168-ssoar-70719-0
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:28 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Abdulahhad, Karam
- Pasi, Gabriella
- Piwowarski, Benjamin
- Azzopardi, Leif
- Hanbury, Allan
- SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
- Springer International Publishing
Time of origin
- 2018