Perfect Ultraviolet Absorbers via Disordered Polarizonic Metasurfaces for Multiband Camouflage and Stealth Technologies

Abstract: Achieving multiband camouflage through the integration of ultraviolet (UV) absorption, visible light camouflage, and infrared signature modulation has long posed a challenge in material science. Leveraging the polarizonic concept, the study demonstrates, for the first time, the broadband camouflage system that adheres to the golden rule by achieving near‐perfect UV absorption (99.96%) across the UV‐A, UV‐B, and UV‐C ranges. This system is also visibly colored to blend with its environment and leaves no thermal signature in the IR. Traditionally, earth‐abundant metals, such as iron, are not considered viable for plasmonic color applications due to their high optical losses and oxidation susceptibility that degrade their optical properties. However, contrary to conventional assumptions, the study introduces a sustainable color palette derived from transparent and grey earth‐abundant materials, offering novel approaches to color, stealth, and energy‐harvesting metasurface‐driven technologies. The simple, cost‐effective, and environmentally friendly co‐sputtering fabrication method highlights the impact of the polarizonic concept and its novel dipolar image interference phenomena on flexible substrates therefore passivating the way for scalable and sustainable solutions in next‐generation camouflage systems with potential applications in UV‐protective coatings, photolithography, and anti‐counterfeiting technologies.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Perfect Ultraviolet Absorbers via Disordered Polarizonic Metasurfaces for Multiband Camouflage and Stealth Technologies ; day:22 ; month:11 ; year:2024 ; extent:10
Advanced functional materials ; (22.11.2024) (gesamt 10)

Creator
Assad, Mhd Adel
Elbahri, Mady

DOI
10.1002/adfm.202418271
URN
urn:nbn:de:101:1-2411231327080.172360275928
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:38 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Assad, Mhd Adel
  • Elbahri, Mady

Other Objects (12)