An Efficient Surrogate-based Multi-objective Optimisation Framework with Novel Sampling Strategy for Sustainable Island Groundwater Management

Abstract. f OC) resulting from groundwater pumping and desalination and maximise fresh groundwater supply (Q p), subject to constraints on seawater intrusion (SWI) control expressed in terms of aquifer drawdown Δs at pumping locations and aquifer salt mass increase ΔSM. Gaussian Process (GP) is the technique applied to construct surrogates of objectives and constraints, alongside the estimation of uncertainties. Using GP models, it is possible to estimate the probability of “Pareto optimality” for each pumping scheme by Monte Carlo simulation. Pareto optimal pumping schemes (POPS) are then characterized by a probability of occurrence, which can be verified by numerical simulation. The GP training strategy's effectiveness in generating POPS is compared to traditional training approaches, showing that such a strategy can efficiently identify reliable POPS.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
An Efficient Surrogate-based Multi-objective Optimisation Framework with Novel Sampling Strategy for Sustainable Island Groundwater Management ; volume:64 ; year:2024 ; pages:23-26 ; extent:4
Advances in geosciences ; 64 (2024), 23-26 (gesamt 4)

Urheber
Yu, Weijiang
Baù, Domenico
Mayer, Alex S.
Geranmehr, Mohammadali

DOI
10.5194/adgeo-64-23-2024
URN
urn:nbn:de:101:1-2412200705084.085984850909
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Yu, Weijiang
  • Baù, Domenico
  • Mayer, Alex S.
  • Geranmehr, Mohammadali

Ähnliche Objekte (12)