Konferenzbeitrag

Agent Teams and Evolutionary Computation: Optimizing Semi- Parametric Spatial Autoregressive Models

Classical spatial autoregressive models share the same weakness as the classical linear regression models, namely it is not possible to estimate non-linear relationships between the dependent and independent variables. In the case of classical linear regression a semi-parametric approach can be used to address this issue. Therefore an advanced semi- parametric modelling approach for spatial autoregressive models is introduced. Advanced semi-parametric modelling requires determining the best configuration of independent variable vectors, number of spline-knots and their positions. To solve this combinatorial optimization problem an asynchronous multi-agent system based on genetic-algorithms is utilized. Three teams of agents work each on a subset of the problem and cooperate through sharing their most optimal solutions. Through this system more complex relationships between the dependent and independent variables can be derived. These could be better suited for the possibly non-linear real-world problems faced by applied spatial econometricians.

Sprache
Englisch

Erschienen in
Series: 51st Congress of the European Regional Science Association: "New Challenges for European Regions and Urban Areas in a Globalised World", 30 August - 3 September 2011, Barcelona, Spain

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Krisztin, Tamás
Koch, Matthias
Ereignis
Veröffentlichung
(wer)
European Regional Science Association (ERSA)
(wo)
Louvain-la-Neuve
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Krisztin, Tamás
  • Koch, Matthias
  • European Regional Science Association (ERSA)

Entstanden

  • 2011

Ähnliche Objekte (12)