Arbeitspapier
Nonparametric estimation of a periodic sequence in the presence of a smooth trend
In this paper, we study a nonparametric regression model including a periodic component, a smooth trend function, and a stochastic error term. We propose a procedure to estimate the unknown period and the function values of the periodic component as well as the nonparametric trend function. The theoretical part of the paper establishes the asymptotic properties of our estimators. In particular, we show that our estimator of the period is consistent. In addition, we derive the convergence rates as well as the limiting distributions of our estimators of the periodic component and the trend function. The asymptotic results are complemented with a simulation study that investigates the small sample behaviour of our procedure. Finally, we illustrate our method by applying it to a series of global temperature anomalies.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP23/12
- Classification
-
Wirtschaft
- Subject
-
nonparametric estimation
penalized least squares
periodic sequence
temperature anomaly data
- Event
-
Geistige Schöpfung
- (who)
-
Vogt, Michael
Linton, Oliver
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2012
- DOI
-
doi:10.1920/wp.cem.2012.2312
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Vogt, Michael
- Linton, Oliver
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2012