Exponential time‐decay for a one‐dimensional wave equation with coefficients of bounded variation

Abstract: We consider the initial‐value problem for a one‐dimensional wave equation with coefficients that are positive, constant outside of an interval, and have bounded variation (BV). Under the assumption of compact support of the initial data, we prove that the local energy decays exponentially fast in time, and provide the explicit constant to which the solution converges. The key ingredient of the proof is a high‐frequency resolvent estimate for an associated Helmholtz operator with a BV potential.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Exponential time‐decay for a one‐dimensional wave equation with coefficients of bounded variation ; day:22 ; month:06 ; year:2023 ; extent:17
Mathematische Nachrichten ; (22.06.2023) (gesamt 17)

Creator
Datchev, Kiril
Shapiro, Jacob

DOI
10.1002/mana.202200459
URN
urn:nbn:de:101:1-2023062215272111791665
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:50 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Datchev, Kiril
  • Shapiro, Jacob

Other Objects (12)