Exponential time‐decay for a one‐dimensional wave equation with coefficients of bounded variation
Abstract: We consider the initial‐value problem for a one‐dimensional wave equation with coefficients that are positive, constant outside of an interval, and have bounded variation (BV). Under the assumption of compact support of the initial data, we prove that the local energy decays exponentially fast in time, and provide the explicit constant to which the solution converges. The key ingredient of the proof is a high‐frequency resolvent estimate for an associated Helmholtz operator with a BV potential.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Exponential time‐decay for a one‐dimensional wave equation with coefficients of bounded variation ; day:22 ; month:06 ; year:2023 ; extent:17
Mathematische Nachrichten ; (22.06.2023) (gesamt 17)
- Creator
-
Datchev, Kiril
Shapiro, Jacob
- DOI
-
10.1002/mana.202200459
- URN
-
urn:nbn:de:101:1-2023062215272111791665
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:50 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Datchev, Kiril
- Shapiro, Jacob