Neural‐network‐based regularization methods for inverse problems in imaging

Abstract: This review provides an introduction to—and overview of—the current state of the art in neural‐network based regularization methods for inverse problems in imaging. It aims to introduce readers with a solid knowledge in applied mathematics and a basic understanding of neural networks to different concepts of applying neural networks for regularizing inverse problems in imaging. Distinguishing features of this review are, among others, an easily accessible introduction to learned generators and learned priors, in particular diffusion models, for inverse problems, and a section focusing explicitly on existing results in function space analysis of neural‐network‐based approaches in this context.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Neural‐network‐based regularization methods for inverse problems in imaging ; day:18 ; month:07 ; year:2024 ; extent:35
GAMM-Mitteilungen / Gesellschaft für Angewandte Mathematik und Mechanik ; (18.07.2024) (gesamt 35)

Creator
Habring, Andreas
Holler, Martin

DOI
10.1002/gamm.202470004
URN
urn:nbn:de:101:1-2407191418164.770313256960
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:44 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Habring, Andreas
  • Holler, Martin

Other Objects (12)