Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains
Abstract ∼ 5 km2). We discuss the potential of multivariate approaches relative to the performance of a selected univariate model and on the basis of multiple extrapolation experiments, where models are tested outside their training region. Our results show that multivariate approaches may (a) significantly enhance flood-prone area delineation (accuracy: 92 %) relative to univariate ones (accuracy: 84 %), (b) provide accurate predictions of expected inundation depths (determination coefficient ∼ 0.7), and (c) produce encouraging results in extrapolation.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains ; volume:22 ; number:4 ; year:2022 ; pages:1469-1486 ; extent:18
Natural hazards and earth system sciences ; 22, Heft 4 (2022), 1469-1486 (gesamt 18)
- Classification
-
Soziale Probleme, Sozialdienste, Versicherungen
- Creator
-
Magnini, Andrea
Lombardi, Michele
Persiano, Simone
Tirri, Antonio
Lo Conti, Francesco
Castellarin, Attilio
- DOI
-
10.5194/nhess-22-1469-2022
- URN
-
urn:nbn:de:101:1-2022042805152170856859
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:20 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Magnini, Andrea
- Lombardi, Michele
- Persiano, Simone
- Tirri, Antonio
- Lo Conti, Francesco
- Castellarin, Attilio