Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains

Abstract ∼ 5  km2). We discuss the potential of multivariate approaches relative to the performance of a selected univariate model and on the basis of multiple extrapolation experiments, where models are tested outside their training region. Our results show that multivariate approaches may (a) significantly enhance flood-prone area delineation (accuracy: 92 %) relative to univariate ones (accuracy: 84 %), (b) provide accurate predictions of expected inundation depths (determination coefficient ∼  0.7), and (c) produce encouraging results in extrapolation.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains ; volume:22 ; number:4 ; year:2022 ; pages:1469-1486 ; extent:18
Natural hazards and earth system sciences ; 22, Heft 4 (2022), 1469-1486 (gesamt 18)

Classification
Soziale Probleme, Sozialdienste, Versicherungen

Creator
Magnini, Andrea
Lombardi, Michele
Persiano, Simone
Tirri, Antonio
Lo Conti, Francesco
Castellarin, Attilio

DOI
10.5194/nhess-22-1469-2022
URN
urn:nbn:de:101:1-2022042805152170856859
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:20 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Magnini, Andrea
  • Lombardi, Michele
  • Persiano, Simone
  • Tirri, Antonio
  • Lo Conti, Francesco
  • Castellarin, Attilio

Other Objects (12)