Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities
Abstract: By applying the combination of discrete variational method and approximation, developed in a previous study [J. Kuang, W. Chen, and Z. Guo, Periodic solutions with prescribed minimal period for second-order even Hamiltonian systems, Commun. Pure Appl. Anal. 21 (2022), no. 1, 47–59], we overcome some difficulties in the absence of Ambrosetti-Rabinowitz condition and obtain new sufficient conditions for the existence of periodic solutions with prescribed minimal period for second-order Hamiltonian systems with asymptotically linear nonlinearities.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities ; volume:20 ; number:1 ; year:2022 ; pages:974-985 ; extent:12
Open mathematics ; 20, Heft 1 (2022), 974-985 (gesamt 12)
- Creator
-
Kuang, Juhong
Chen, Weiyi
- DOI
-
10.1515/math-2022-0473
- URN
-
urn:nbn:de:101:1-2022091314071812546301
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:34 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Kuang, Juhong
- Chen, Weiyi