Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities

Abstract: By applying the combination of discrete variational method and approximation, developed in a previous study [J. Kuang, W. Chen, and Z. Guo, Periodic solutions with prescribed minimal period for second-order even Hamiltonian systems, Commun. Pure Appl. Anal. 21 (2022), no. 1, 47–59], we overcome some difficulties in the absence of Ambrosetti-Rabinowitz condition and obtain new sufficient conditions for the existence of periodic solutions with prescribed minimal period for second-order Hamiltonian systems with asymptotically linear nonlinearities.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities ; volume:20 ; number:1 ; year:2022 ; pages:974-985 ; extent:12
Open mathematics ; 20, Heft 1 (2022), 974-985 (gesamt 12)

Creator
Kuang, Juhong
Chen, Weiyi

DOI
10.1515/math-2022-0473
URN
urn:nbn:de:101:1-2022091314071812546301
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:34 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kuang, Juhong
  • Chen, Weiyi

Other Objects (12)