Arbeitspapier

Robust maximum detection: Full information best choice problem under multiple priors

We consider a robust version of the full information best choice problem (Gilbert and Mosteller (1966)): there is ambiguity (represented by a set of priors) about the measure driving the observed process. We solve the problem under a very general class of multiple priors in the setting of Riedel (2009). As in the classical case, it is optimal to stop if the current observation is a running maximum that exceeds certain thresholds. We characterize the decreasing sequence of thresholds, as well as the (history dependent) minimizing measure. We introduce locally constant ambiguity neighborhood (LCAn) which has connections to coherent risk measures. Sensitivity analysis is performed using LCAn and exponential neighborhood from Riedel (2009).

Sprache
Englisch

Erschienen in
Series: Center for Mathematical Economics Working Papers ; No. 580

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Obradović, Lazar
Ereignis
Veröffentlichung
(wer)
Bielefeld University, Center for Mathematical Economics (IMW)
(wo)
Bielefeld
(wann)
2018

Handle
URN
urn:nbn:de:0070-pub-29169338
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Obradović, Lazar
  • Bielefeld University, Center for Mathematical Economics (IMW)

Entstanden

  • 2018

Ähnliche Objekte (12)