Arbeitspapier

Kernel Dependent Functions in Nonparametric Regression with Fractional Time Series Errors

This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (delta) in the asymptotic variance and finding closed form formula of it, where delta is the long-memory parameter. - General solution of V (delta) for polynomial kernels is given together with a few examples. It is also found, e.g. that the Uniform kernel is no longer the minimum variance one by strongly antipersistent errors and that, for a fourth order kernel, V (delta) at some delta > 0 is clearly smaller than R(K). The results are used to develop a general data-driven algorithm. Data examples illustrate the practical relevance of the approach and the performance of the algorithm

Language
Englisch

Bibliographic citation
Series: CoFE Discussion Paper ; No. 03/02

Classification
Wirtschaft
Subject
Nonparametric regression
long memory
antipersistence
fractional difference
kernel dependent function
bandwidth selection
Nichtparametrisches Verfahren
Zeitreihenanalyse
Statistischer Fehler
Theorie

Event
Geistige Schöpfung
(who)
Feng, Yuanhua
Event
Veröffentlichung
(who)
University of Konstanz, Center of Finance and Econometrics (CoFE)
(where)
Konstanz
(when)
2003

Handle
URN
urn:nbn:de:bsz:352-opus-10046
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Feng, Yuanhua
  • University of Konstanz, Center of Finance and Econometrics (CoFE)

Time of origin

  • 2003

Other Objects (12)