Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing

Abstract v), were generally the most important variables contributing to model skill. However, daytime and nighttime land surface temperatures and SMAP soil moisture and soil temperature also contributed to model skill, with SMAP especially improving model predictions of shrubland, grassland, and savanna fluxes and land surface temperatures improving predictions in evergreen needleleaf forests. Our results show that a combination of optical vegetation indices and thermal infrared and microwave observations can substantially improve estimates of carbon and water fluxes in drylands, potentially providing the means to better monitor vegetation function and ecosystem services in these important regions that are undergoing rapid hydroclimatic change.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing ; volume:20 ; number:2 ; year:2023 ; pages:383-404 ; extent:22
Biogeosciences ; 20, Heft 2 (2023), 383-404 (gesamt 22)

Creator
Dannenberg, Matthew P.
Barnes, Mallory L.
Smith, William K.
Johnston, Miriam R.
Meerdink, Susan K.
Wang, Xian
Scott, Russell L.
Biederman, Joel A.

DOI
10.5194/bg-20-383-2023
URN
urn:nbn:de:101:1-2023033008042965244867
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:03 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Dannenberg, Matthew P.
  • Barnes, Mallory L.
  • Smith, William K.
  • Johnston, Miriam R.
  • Meerdink, Susan K.
  • Wang, Xian
  • Scott, Russell L.
  • Biederman, Joel A.

Other Objects (12)