(Non) linear instability of periodic traveling waves: Klein–Gordon and KdV type equations

We prove the existence and nonlinear instability of periodic traveling wave solutions for the critical one-dimensional Klein–Gordon equation. We also establish a linear instability criterium for a KdV type system. An application of this approach is made to obtain the linear/nonlinear instability of vector cnoidal wave profiles. Finally, via a theoretical and numerical approach we show the linear stability or instability of periodic positive and sign changing waves, respectively, for the critical Korteweg–de Vries equation.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
(Non) linear instability of periodic traveling waves: Klein–Gordon and KdV type equations ; volume:3 ; number:2 ; year:2014 ; pages:95-123 ; extent:29
Advances in nonlinear analysis ; 3, Heft 2 (2014), 95-123 (gesamt 29)

Creator
Angulo Pava, Jaime
Natali, Fabio

DOI
10.1515/anona-2014-0008
URN
urn:nbn:de:101:1-2405011749457.269894984313
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:02 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Angulo Pava, Jaime
  • Natali, Fabio

Other Objects (12)