Enzyme based amperometric wide field biosensors: Is single‐molecule detection possible?

Abstract: This review discloses the technological advances involving enzyme‐based amperometric biosensors engaging challenging limits of detection as low as a single molecule. At first, we summarise the most recent findings concerning electrode modification toward the enhancement of the enzyme loading accomplished mainly through the deposition of nanomaterials. The increase of the electron transfer (ET) rate is mostly based on the enzyme site‐specific immobilization through the analysis of the enzyme structure/sequence and protein bioengineering is overviewed. However, both approaches are not appropriate to develop enzyme‐based amperometric biosensors able to reach reliable analytical detections below micro‐/nano‐molar. The last part is devoted to single‐molecule electrochemistry that has been widely exploited as a near‐field approach in the last decades as a proof‐of‐concept for the detection of single ET events. Organic electrochemical transistors operated as Faradaic current amplifiers do not detect below micro‐/nano‐molar. We here propose an alternative approach based on the combination of an electrochemical cell with a bipolar junction transistor in the extended base configuration, drawing some conclusions and future perspectives on the detection of single ET events at a large electrode for the development of Point‐of‐Care devices.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Enzyme based amperometric wide field biosensors: Is single‐molecule detection possible? ; day:02 ; month:02 ; year:2022 ; extent:17
Electrochemical science advances ; (02.02.2022) (gesamt 17)

Creator
Tricase, Angelo
Imbriano, Anna
Macchia, Eleonora
Sarcina, Lucia
Scandurra, Cecilia
Torricelli, Fabrizio
Cioffi, Nicola
Torsi, Luisa
Bollella, Paolo

DOI
10.1002/elsa.202100215
URN
urn:nbn:de:101:1-2022020314010294159073
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:24 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Tricase, Angelo
  • Imbriano, Anna
  • Macchia, Eleonora
  • Sarcina, Lucia
  • Scandurra, Cecilia
  • Torricelli, Fabrizio
  • Cioffi, Nicola
  • Torsi, Luisa
  • Bollella, Paolo

Other Objects (12)