Energy‐Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing

Abstract: Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle‐to‐cycle variability or strict epitaxy requirements remain a challenge for applications in large‐scale neural networks. Here, solution‐processable ferroelectric tunnel junctions (FTJs) with P (VDF‐TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long‐ and short‐term potentiation and depression, paired‐pulse facilitation and depression, and Hebbian and anti‐Hebbian learning through spike shape and timing‐dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Energy‐Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing ; volume:5 ; number:3 ; year:2019 ; extent:10
Advanced electronic materials ; 5, Heft 3 (2019) (gesamt 10)

Urheber
Majumdar, Sayani
Tan, Hongwei
Qin, Qi Hang
van Dijken, Sebastiaan

DOI
10.1002/aelm.201800795
URN
urn:nbn:de:101:1-2022080612564473852336
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:28 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Majumdar, Sayani
  • Tan, Hongwei
  • Qin, Qi Hang
  • van Dijken, Sebastiaan

Ähnliche Objekte (12)