How Low Nucleation Density of Graphene on CuNi Alloy is Achieved

Abstract: CuNi alloy foils are demonstrated to be one of the best substrates for synthesizing large area single‐crystalline graphene because a very fast growth rate and low nucleation density can be simultaneously achieved. The fast growth rate is understood to be due the abundance of carbon precursor supply, as a result of the high catalytic activity of Ni atoms. However, a theoretical understanding of the low nucleation density remains controversial because it is known that a high carbon precursor concentration on the surface normally leads to a high nucleation density. Here, the graphene nucleation on the CuNi alloy surfaces is systematically explored and it is revealed that: i) carbon atom dissolution into the CuNi alloy passivates the alloy surface, thereby drastically increasing the graphene nucleation barrier; ii) carbon atom diffusion on the CuNi alloy surface is greatly suppressed by the inhomogeneous atomic structure of the surface; and iii) a prominent increase in the rate of carbon diffusion into the bulk occurs when the Ni composition is higher than the percolation threshold. This study reveals the key mechanism for graphene nucleation on CuNi alloy surfaces and provides a guideline for the catalyst design for the synthesis of graphene and other 2D materials.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
How Low Nucleation Density of Graphene on CuNi Alloy is Achieved ; volume:5 ; number:6 ; year:2018 ; extent:8
Advanced science ; 5, Heft 6 (2018) (gesamt 8)

Urheber
Liu, Yifan
Wu, Tianru
Yin, Yuling
Zhang, Xuefu
Yu, Qingkai
Searles, Debra J.
Ding, Feng
Yuan, Qinghong
Xie, Xiaoming

DOI
10.1002/advs.201700961
URN
urn:nbn:de:101:1-2022090307291268502669
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Liu, Yifan
  • Wu, Tianru
  • Yin, Yuling
  • Zhang, Xuefu
  • Yu, Qingkai
  • Searles, Debra J.
  • Ding, Feng
  • Yuan, Qinghong
  • Xie, Xiaoming

Ähnliche Objekte (12)