SELF-TRAINING FOR SEMI-SUPERVISED DEEP CONTOUR DETECTION OF SURFACE WATER

Abstract. Contour detection is better for monitoring dynamic and long-term changes to surface water bodies. For that purpose, we present a semi-automated method for collecting and labeling water contours from Landsat-8 and Sentinel-2 images. Due to the need for human inspection, the method has thus far generated 14K labeled images from more than 1.5M images. Given the cost of data labeling, we propose a deep semi-supervised self-learning system performed in two training stages, known as teacher-student. The teacher is trained on the accurate human-labeled data, then used to pseudo label the remaining unlabeled data. The student is trained on both human-labeled and machine pseudo-labeled data. For both teacher and student, we use a uniquely designed multiscale UNet classifier that uses fewer parameters and is more accurate than other state-of-the-art classifiers. Random augmentations are used to “noise” the student model and improve its generalization, and normalization schemes are used to blend the human-labeled loss with the machine-labeled loss. Comparisons to existing water body detection classifiers and segmentation classifiers show the superiority of our proposed system in detecting water contours.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
SELF-TRAINING FOR SEMI-SUPERVISED DEEP CONTOUR DETECTION OF SURFACE WATER ; volume:XLIII-B3-2022 ; year:2022 ; pages:1393-1398 ; extent:6
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLIII-B3-2022 (2022), 1393-1398 (gesamt 6)

Urheber
Alsamman, A.
Syed, M. B.

DOI
10.5194/isprs-archives-XLIII-B3-2022-1393-2022
URN
urn:nbn:de:101:1-2022060205240631978221
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:35 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Alsamman, A.
  • Syed, M. B.

Ähnliche Objekte (12)