Causal Paths Allowing Simultaneous Control of Multiple Nanoparticle Properties Using Multi‐Target Bayesian Inference

Abstract: Machine learning can extract complex structure/property relationships but is often insufficient to explain how to control or tune the properties of materials, particularly when they are multi‐functional. This study demonstrates the value of combining multi‐target regression and multi‐target causal graphs to address the need to simultaneously control multiple properties of nanomaterials, and the need to translate these relationships into actionable insights. Using nanodiamonds as an exemplar, recursive feature elimination is first used to identify nine structural features that allow simultaneous prediction of their electron charge transfer properties and thermochemical stability to high accuracy by an interpretable random forest regressor. A multi‐target Bayesian network with domain knowledge incorporated via interactive learning using a hill‐climbing algorithm then determines how these important structural features of nanodiamonds relate to their functional properties, proposing causal paths that can be used to inform experimental design.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Causal Paths Allowing Simultaneous Control of Multiple Nanoparticle Properties Using Multi‐Target Bayesian Inference ; day:24 ; month:07 ; year:2022 ; extent:10
Advanced theory and simulations ; (24.07.2022) (gesamt 10)

Creator
Ting, Jonathan Y. C.
Li, Sichao
Barnard, Amanda

DOI
10.1002/adts.202200330
URN
urn:nbn:de:101:1-2022072515014107158666
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)