Monitoring forest cover and land use change in the Congo Basin under IPCC climate change scenarios

Abstract: The Congo Basin tropical forests are home to many endemic and endangered species, and a global hotspot for forest fragmentation and loss. Yet, little has been done to document the region’s rapid deforestation, assess its effects and consequences, or project future forest cover loss to aid in effective planning. Here we applied the Random Forest (RF) supervised classification algorithm in Google Earth Engine (GEE) to map and quantify decadal changes in forest cover and land use (LCLU) in the Congo Basin between 1990 and 2020. We cross-validated our LCLU maps with existing global land cover products, and projected our validated results to 2050 under three climate change scenarios, using the Multiperceptron Artificial Neural Network and Markov chain algorithms of the Idrissi Land Change modeller from TerrSet. We found that, over 5.2% (215,938 km2), 1.2% (50,046 km2), and a 2.1% (86,658 km2) of dense forest cover were lost in the Congo Basin between 1990–2000, 2000–2010, and 2010–2020, totaling approximately 8.5% (352,642 km2) loss estimated between 1990–2020. For the period 2020–2050, we estimated a projected 3.7–4.0% (174,860–204,161 km2) loss in dense forest cover under all three climate change scenarios (i.e., 174,860 km2 loss projected for SSP1-2.6, 199,608 km2 for SSP2-4.5, and 204,161 km2 for SSP5-8.5), suggesting that approximately 12.3–12.6% (527,502 km2–556,803 km2) of dense forest cover could be lost over a 60-year period (1990–2050). Our study represents a novel application of spatial modeling tools and Machine Learning algorithms for assessing long-term deforestation and forest degradation within the Congo Basin, under human population growth and IPCC climate change scenarios. We provide spatial and quantitative results required for supporting long-term deforestation and forest degradation monitoring within Congo Basin countries, especially under the United Nations Framework Convention on Climate Change (UNFCCC) REDD+ (Reduce Emissions from Deforestation and Forest Degradation) program

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
PLOS ONE. - 19, 12 (2024) , e0311816, ISSN: 1932-6203

Klassifikation
Natürliche Ressourcen, Energie und Umwelt

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Yuh, Yisa Ginath
Kross, Angela
Heurich, Marco
Matthews, H. Damon
Turner, Sarah E.

DOI
10.1371/journal.pone.0311816
URN
urn:nbn:de:bsz:25-freidok-2608114
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Yuh, Yisa Ginath
  • Kross, Angela
  • Heurich, Marco
  • Matthews, H. Damon
  • Turner, Sarah E.
  • Universität

Entstanden

  • 2024

Ähnliche Objekte (12)