Cellulose nanofiber-filled chitosan hydrogel composites for intervertebral disc tissue repairing

Abstract: The development of non-cellularized composites of chitosan (CHI) hydrogels, filled with cellulose nanofibers (CNFs) of the type nanofibrillated cellulose, was proposed for the repair and regeneration of the intervertebral disc (IVD) annulus fibrosus (AF) tissue. With the achievement of CNF-filled CHI hydrogels, biomaterial-based implants were designed to restore damaged/degenerated discs. The structural, mechanical and biological properties of the developed hydrogel composites were investigated. The neutralization of weakly acidic aqueous CNF/CHI viscous suspensions in NaOH yielded composites of physical hydrogels in which the cellulose nanofibers reinforced the CHI matrix, as investigated by means of microtensile testing under controlled humidity. We assessed the suitability of the achieved biomaterials for intervertebral disc tissue engineering in ex vivo experiments using spine pig models. Cellulose nanofiber-filled chitosan hydrogels can be used as implants in AF tissue defects to restore IVD biomechanics and constitute contention patches against disc nucleus protrusion while serving as support for IVD regeneration

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
issn: 2313-7673

Keyword
Funktionsgel
Chitosan
Nanofaser
Bandscheibe
Tissue Engineering

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2019
Creator
Dönch, Ingo
Tran, Tuan Anh
David, Laurent
Montembault, Alexandra
Viguier, Eric
Gorzelanny, Christian
Sudre, Guillaume
Cachon, Thibaut
Louback-Mohamed, Malika
Horbelt, Niels
Peniche-Covas, Carlos
Osorio-Madrazo, Anayancy

DOI
10.3390/biomimetics4010019
URN
urn:nbn:de:bsz:25-freidok-1492934
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:42 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2019

Other Objects (12)