Arbeitspapier
Forecasting Aggregate Productivity using Information from Firm-Level Data
This paper contributes to the productivity literature by using results from firm-level productivity studies to improve forecasts of macro-level productivity growth. The paper employs current research methods on estimating firm-level productivity to build times-series components that capture the joint dynamics of the firm-level productivity and size distributions. The main question of the paper is to assess whether the micro-aggregated components of productivity---the so-called productivity decompositions---add useful information to improve the performance of macro-level productivity forecasts. The paper explores various specifications of decompositions and various forecasting experiments. The result from these horse-races is that micro-aggregated components improve simple aggregate total factor productivity forecasts. While the results are mixed for richer forecasting specifications, the paper shows, using Bayesian model averaging techniques (BMA), that the forecasts using micro-level information were always better than the macro alternative.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 09-043/3
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
Microeconomic Analyses of Economic Development
Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
- Thema
-
Economic growth
production function
total factor productivity
aggregation
firm-level data data
Bayesian analysis
forecasting
Wirtschaftswachstum
Messung
Produktionsfunktion
Produktivität
Prognoseverfahren
Bayes-Statistik
Nichtparametrisches Verfahren
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bartelsman, Eric J.
Wolf, Zoltan
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2009
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Bartelsman, Eric J.
- Wolf, Zoltan
- Tinbergen Institute
Entstanden
- 2009