Arbeitspapier

Forecasting Aggregate Productivity using Information from Firm-Level Data

This paper contributes to the productivity literature by using results from firm-level productivity studies to improve forecasts of macro-level productivity growth. The paper employs current research methods on estimating firm-level productivity to build times-series components that capture the joint dynamics of the firm-level productivity and size distributions. The main question of the paper is to assess whether the micro-aggregated components of productivity---the so-called productivity decompositions---add useful information to improve the performance of macro-level productivity forecasts. The paper explores various specifications of decompositions and various forecasting experiments. The result from these horse-races is that micro-aggregated components improve simple aggregate total factor productivity forecasts. While the results are mixed for richer forecasting specifications, the paper shows, using Bayesian model averaging techniques (BMA), that the forecasts using micro-level information were always better than the macro alternative.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 09-043/3

Klassifikation
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
Microeconomic Analyses of Economic Development
Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
Thema
Economic growth
production function
total factor productivity
aggregation
firm-level data data
Bayesian analysis
forecasting
Wirtschaftswachstum
Messung
Produktionsfunktion
Produktivität
Prognoseverfahren
Bayes-Statistik
Nichtparametrisches Verfahren
Theorie

Ereignis
Geistige Schöpfung
(wer)
Bartelsman, Eric J.
Wolf, Zoltan
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2009

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bartelsman, Eric J.
  • Wolf, Zoltan
  • Tinbergen Institute

Entstanden

  • 2009

Ähnliche Objekte (12)