Arbeitspapier

Nonparametric regression for locally stationary time series

In this paper, we study nonparametric models allowing for locally stationary regressors and a regression function that changes smoothly over time. These models are a natural extension of time series models with time-varying coefficients. We introduce a kernel-based method to estimate the time-varying regression function and provide asymptotic theory for our estimates. Moreover, we show that the main conditions of the theory are satis ed for a large class of nonlinear autoregressive processes with a time-varying regression function. Finally, we examine structured models where the regression function splits up into time-varying additive components. As will be seen, estimation in these models does not su er from the curse of dimensionality. We complement the technical analysis of the paper by an application to financial data.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP22/12

Klassifikation
Wirtschaft
Thema
local stationarity
nonparametric regression
smooth backfitting

Ereignis
Geistige Schöpfung
(wer)
Vogt, Michael
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2012

DOI
doi:10.1920/wp.cem.2012.2212
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Vogt, Michael
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2012

Ähnliche Objekte (12)