Artikel

Econometric information recovery in behavioral networks

In this paper, we suggest an approach to recovering behavior-related, preference-choice network information from observational data. We model the process as a self-organized behavior based random exponential network-graph system. To address the unknown nature of the sampling model in recovering behavior related network information, we use the Cressie-Read (CR) family of divergence measures and the corresponding information theoretic entropy basis, for estimation, inference, model evaluation, and prediction. Examples are included to clarify how entropy based information theoretic methods are directly applicable to recovering the behavioral network probabilities in this fundamentally underdetermined ill posed inverse recovery problem.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 3 ; Pages: 1-11 ; Basel: MDPI

Klassifikation
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Thema
random exponential networks
binary and weighed networks
inverse problem
adjacency matrix
Cressie-Read family of divergence measures
conditional moment conditions
self organized behavior systems

Ereignis
Geistige Schöpfung
(wer)
Judge, George
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2016

DOI
doi:10.3390/econometrics4030038
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Judge, George
  • MDPI

Entstanden

  • 2016

Ähnliche Objekte (12)