Artikel
Econometric information recovery in behavioral networks
In this paper, we suggest an approach to recovering behavior-related, preference-choice network information from observational data. We model the process as a self-organized behavior based random exponential network-graph system. To address the unknown nature of the sampling model in recovering behavior related network information, we use the Cressie-Read (CR) family of divergence measures and the corresponding information theoretic entropy basis, for estimation, inference, model evaluation, and prediction. Examples are included to clarify how entropy based information theoretic methods are directly applicable to recovering the behavioral network probabilities in this fundamentally underdetermined ill posed inverse recovery problem.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 3 ; Pages: 1-11 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
- Thema
-
random exponential networks
binary and weighed networks
inverse problem
adjacency matrix
Cressie-Read family of divergence measures
conditional moment conditions
self organized behavior systems
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Judge, George
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2016
- DOI
-
doi:10.3390/econometrics4030038
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Judge, George
- MDPI
Entstanden
- 2016