Arbeitspapier
Mixtures of t-distributions for finance and forecasting
We explore convenient analytic properties of distributions constructed as mixtures of scaled and shifted t-distributions. A feature that makes this family particularly desirable for econometric applications is that it possesses closed-form expressions for its anti-derivatives (e.g., the cumulative density function). We illustrate the usefulness of these distributions in two applications. In the first application, we use a scaled and shifted t-distribution to produce density forecasts of U.S. inflation and show that these forecasts are more accurate, out-ofsample, than density forecasts obtained using normal or standard t-distributions. In the second application, we replicate the option-pricing exercise of Abadir and Rockinger (2003) using a mixture of scaled and shifted t-distributions and obtain comparably good results, while gaining analytical tractability.
- Sprache
-
Englisch
- Erschienen in
-
Series: Reihe Ökonomie / Economics Series ; No. 216
- Klassifikation
-
Wirtschaft
Computational Techniques; Simulation Modeling
Forecasting Models; Simulation Methods
Neural Networks and Related Topics
- Thema
-
ARMA-GARCH models
neural networks
nonparametric density estimation
forecast accuracy
option pricing
risk neutral density
ARCH-Modell
Neuronale Netze
Prognoseverfahren
Nichtparametrisches Verfahren
Schätztheorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Giacomini, Raffaella
Gottschling, Andreas
Haefke, Christian
White, Halbert
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute for Advanced Studies (IHS)
- (wo)
-
Vienna
- (wann)
-
2007
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Giacomini, Raffaella
- Gottschling, Andreas
- Haefke, Christian
- White, Halbert
- Institute for Advanced Studies (IHS)
Entstanden
- 2007