Integrating knowledge and omics to decipher mechanisms via large‐scale models of signaling networks

Abstract: Signal transduction governs cellular behavior, and its dysregulation often leads to human disease. To understand this process, we can use network models based on prior knowledge, where nodes represent biomolecules, usually proteins, and edges indicate interactions between them. Several computational methods combine untargeted omics data with prior knowledge to estimate the state of signaling networks in specific biological scenarios. Here, we review, compare, and classify recent network approaches according to their characteristics in terms of input omics data, prior knowledge and underlying methodologies. We highlight existing challenges in the field, such as the general lack of ground truth and the limitations of prior knowledge. We also point out new omics developments that may have a profound impact, such as single‐cell proteomics or large‐scale profiling of protein conformational changes. We provide both an introduction for interested users seeking strategies to study cell signaling on a large scale and an update for seasoned modelers.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Integrating knowledge and omics to decipher mechanisms via large‐scale models of signaling networks ; volume:18 ; number:7 ; year:2022 ; extent:15
Molecular systems biology ; 18, Heft 7 (2022) (gesamt 15)

DOI
10.15252/msb.202211036
URN
urn:nbn:de:101:1-2022072615175668466603
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Ähnliche Objekte (12)