Kobayashi—Hitchin correspondence for twisted vector bundles
Abstract: We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g−polystable if and only if it is g−Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X, then a twisted holomorphic vector bundle on X is g−semistable if and only if it is approximate g−Hermite-Einstein.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Kobayashi—Hitchin correspondence for twisted vector bundles ; volume:8 ; number:1 ; year:2021 ; pages:1-95 ; extent:95
Complex manifolds ; 8, Heft 1 (2021), 1-95 (gesamt 95)
- Creator
-
Perego, Arvid
- DOI
-
10.1515/coma-2020-0107
- URN
-
urn:nbn:de:101:1-2022111213211290694696
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:22 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Perego, Arvid