Probabilistic limit theorems induced by the zeros of polynomials

Abstract: Sequences of discrete random variables are studied whose probability generating functions are zero‐free in a sector of the complex plane around the positive real axis. Sharp bounds on the cumulants of all orders are stated, leading to Berry–Esseen bounds, moderate deviation results, concentration inequalities, and mod‐Gaussian convergence. In addition, an alternate proof of the cumulant bound with improved constants for a class of polynomials all of whose roots lie on the unit circle is provided. A variety of examples is discussed in detail.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Probabilistic limit theorems induced by the zeros of polynomials ; day:26 ; month:12 ; year:2023 ; extent:21
Mathematische Nachrichten ; (26.12.2023) (gesamt 21)

Creator
Heerten, Nils
Sambale, Holger
Thäle, Christoph

DOI
10.1002/mana.202300109
URN
urn:nbn:de:101:1-2023122614062635859714
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Heerten, Nils
  • Sambale, Holger
  • Thäle, Christoph

Other Objects (12)