Numeric vs. verbal information: the influence of information quantifiability in Human-AI vs. Human-Human decision support

Abstract: A number of factors, including different task characteristics, influence trust in human vs. AI decision support. In particular, the aspect of information quantifiability could influence trust and dependence, especially considering that human and AI support may have varying strengths in assessing criteria that differ in their quantifiability. To investigate the effect of information quantifiability we conducted an online experiment (N =204) with a 2 (support agent: AI vs. human) *2 (quantifiability: low vs. high) between-subjects design, using a simulated recruitment task. The support agent was manipulated via framing, while quantifiability was manipulated by the evaluation criteria in the recruitment paradigm. The analysis revealed higher trust for human over AI support. Moreover, trust was higher in the low than in the high quantifiability condition. Counterintuitively, participants rated the applicants as less qualified than their support agent’s rating, especially noticeable in the low quantifiability condition. Besides reinforcing earlier findings showing higher trust towards human experts than towards AI and showcasing the importance of information quantifiability, the present study also raises questions concerning the perceived leniency of support agents and its impact on trust and behavior

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Computers in human behavior. - 3 (2025) , 100116, ISSN: 2949-8821

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Roesler, Eileen
Rieger, Tobias
Langer, Markus

DOI
10.1016/j.chbah.2024.100116
URN
urn:nbn:de:bsz:25-freidok-2611021
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)