Artikel
Second-order least squares estimation in nonlinear time series models with ARCH errors
Many financial and economic time series exhibit nonlinear patterns or relationships. However, most statistical methods for time series analysis are developed for mean-stationary processes that require transformation, such as differencing of the data. In this paper, we study a dynamic regression model with nonlinear, time-varying mean function, and autoregressive conditionally heteroscedastic errors. We propose an estimation approach based on the first two conditional moments of the response variable, which does not require specification of error distribution. Strong consistency and asymptotic normality of the proposed estimator is established under strong-mixing condition, so that the results apply to both stationary and mean-nonstationary processes. Moreover, the proposed approach is shown to be superior to the commonly used quasi-likelihood approach and the efficiency gain is significant when the (conditional) error distribution is asymmetric. We demonstrate through a real data example that the proposed method can identify a more accurate model than the quasi-likelihood method.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 4 ; Pages: 1-17 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
- Thema
-
ARCH error
econometric modeling
financial time series
mean nonstationarity
mixing process
nonlinear dynamic model
second order least squares
semiparametric efficiency
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Salamh, Mustafa
Wang, Liqun
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2021
- DOI
-
doi:10.3390/econometrics9040041
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Salamh, Mustafa
- Wang, Liqun
- MDPI
Entstanden
- 2021