Artikel

Second-order least squares estimation in nonlinear time series models with ARCH errors

Many financial and economic time series exhibit nonlinear patterns or relationships. However, most statistical methods for time series analysis are developed for mean-stationary processes that require transformation, such as differencing of the data. In this paper, we study a dynamic regression model with nonlinear, time-varying mean function, and autoregressive conditionally heteroscedastic errors. We propose an estimation approach based on the first two conditional moments of the response variable, which does not require specification of error distribution. Strong consistency and asymptotic normality of the proposed estimator is established under strong-mixing condition, so that the results apply to both stationary and mean-nonstationary processes. Moreover, the proposed approach is shown to be superior to the commonly used quasi-likelihood approach and the efficiency gain is significant when the (conditional) error distribution is asymmetric. We demonstrate through a real data example that the proposed method can identify a more accurate model than the quasi-likelihood method.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 9 ; Year: 2021 ; Issue: 4 ; Pages: 1-17 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
ARCH error
econometric modeling
financial time series
mean nonstationarity
mixing process
nonlinear dynamic model
second order least squares
semiparametric efficiency

Ereignis
Geistige Schöpfung
(wer)
Salamh, Mustafa
Wang, Liqun
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/econometrics9040041
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Salamh, Mustafa
  • Wang, Liqun
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)