Arbeitspapier
German forecasters' narratives: How informative are German business cycle forecast reports?
Based on German business cycle forecast reports covering 10 German institutions for the period 1993-2017, the paper analyses the information content of German forecasters' narratives for German business cycle forecasts. The paper applies textual analysis to convert qualitative text data into quantitative sentiment indices. First, a sentiment analysis utilizes dictionary methods and text regression methods, using recursive estimation. Next, the paper analyses the different characteristics of sentiments. In a third step, sentiment indices are used to test the efficiency of numerical forecasts. Using 12-month-ahead fixed horizon forecasts, fixed-effects panel regression results suggest some informational content of sentiment indices for growth and inflation forecasts. Finally, a forecasting exercise analyses the predictive power of sentiment indices for GDP growth and inflation. The results suggest weak evidence, at best, for in-sample and out-of-sample predictive power of the sentiment indices.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers of the Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour" ; No. 23
- Klassifikation
-
Wirtschaft
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
General Outlook and Conditions
- Thema
-
Textual analysis
Sentiment
Macroeconomic forecasting
Forecast evaluation
Germany
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Müller, Karsten
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University Berlin
- (wo)
-
Berlin
- (wann)
-
2020
- DOI
-
doi:10.18452/22014
- Handle
- URN
-
urn:nbn:de:kobv:11-110-18452/22697-1
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Müller, Karsten
- Humboldt University Berlin
Entstanden
- 2020