Arbeitspapier

German forecasters' narratives: How informative are German business cycle forecast reports?

Based on German business cycle forecast reports covering 10 German institutions for the period 1993-2017, the paper analyses the information content of German forecasters' narratives for German business cycle forecasts. The paper applies textual analysis to convert qualitative text data into quantitative sentiment indices. First, a sentiment analysis utilizes dictionary methods and text regression methods, using recursive estimation. Next, the paper analyses the different characteristics of sentiments. In a third step, sentiment indices are used to test the efficiency of numerical forecasts. Using 12-month-ahead fixed horizon forecasts, fixed-effects panel regression results suggest some informational content of sentiment indices for growth and inflation forecasts. Finally, a forecasting exercise analyses the predictive power of sentiment indices for GDP growth and inflation. The results suggest weak evidence, at best, for in-sample and out-of-sample predictive power of the sentiment indices.

Sprache
Englisch

Erschienen in
Series: Working Papers of the Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour" ; No. 23

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
General Outlook and Conditions
Thema
Textual analysis
Sentiment
Macroeconomic forecasting
Forecast evaluation
Germany

Ereignis
Geistige Schöpfung
(wer)
Müller, Karsten
Ereignis
Veröffentlichung
(wer)
Humboldt University Berlin
(wo)
Berlin
(wann)
2020

DOI
doi:10.18452/22014
Handle
URN
urn:nbn:de:kobv:11-110-18452/22697-1
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Müller, Karsten
  • Humboldt University Berlin

Entstanden

  • 2020

Ähnliche Objekte (12)