Who’s gonna use this? Acceptance prediction of emerging technologies with Cognitive-Affective Mapping and transdisciplinary considerations in the Anthropocene

Abstract: In the Anthropocene, mankind is facing enormous challenges. Science and technology obviously have an essential role to play in addressing these challenges but have to be supplemented by the collaboration of different actors from the scientific and non-scientific community. Possibly beneficial technologies can only unfold their full potential if they are socially accepted. Participation and transdisciplinarity are key concepts in this regard. The need for methods fostering collaborative knowledge production and reverse communication from the public to the scientific community is accordingly high. In this article, we propose to apply Cognitive-Affective Mapping (CAM) to predict psychological acceptance of novel research fields and potentially resulting technologies. As an example, we use life-like materials systems. CAM enables acceptance prediction at an early stage—already for basic research when prototypes are not yet available. The method bridges the gap between qualitative and quantitative research traditions. Its product—Cognitive-Affective Maps (CAMs)—is a vivid visual tool. In perspective, CAM-based technology acceptance assessment can be conceived as a participatory, transdisciplinary practice

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
The Anthropocene review. - 9, 2 (2022) , 276-295, ISSN: 2053-020X

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2022
Urheber
Livanec, Sabrina
Stumpf, Michael
Reuter, Lisa
Fenn, Julius
Kiesel, Andrea

DOI
10.1177/20530196221078924
URN
urn:nbn:de:bsz:25-freidok-2288067
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:58 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2022

Ähnliche Objekte (12)